direct product, p-group, elementary abelian, monomial, rational
Aliases: C22, symmetries of a (non-square) rectangle, Klein 4-group V4, SmallGroup(4,2)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 |
C1 — C22 |
C1 — C22 |
Generators and relations for C22
G = < a,b | a2=b2=1, ab=ba >
Character table of C22
class | 1 | 2A | 2B | 2C | |
size | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | linear of order 2 |
(1 2)(3 4)
(1 4)(2 3)
G:=sub<Sym(4)| (1,2)(3,4), (1,4)(2,3)>;
G:=Group( (1,2)(3,4), (1,4)(2,3) );
G=PermutationGroup([[(1,2),(3,4)], [(1,4),(2,3)]])
G:=TransitiveGroup(4,2);
C22 is a maximal subgroup of
D4 A4
C22 is a maximal quotient of D4 Q8
action | f(x) | Disc(f) |
---|---|---|
4T2 | x4+1 | 28 |
Matrix representation of C22 ►in GL2(ℤ) generated by
-1 | 0 |
0 | 1 |
1 | 0 |
0 | -1 |
G:=sub<GL(2,Integers())| [-1,0,0,1],[1,0,0,-1] >;
C22 in GAP, Magma, Sage, TeX
C_2^2
% in TeX
G:=Group("C2^2");
// GroupNames label
G:=SmallGroup(4,2);
// by ID
G=gap.SmallGroup(4,2);
# by ID
G:=PCGroup([2,-2,2]:ExponentLimit:=1);
// Polycyclic
G:=Group<a,b|a^2=b^2=1,a*b=b*a>;
// generators/relations
Export
Subgroup lattice of C22 in TeX
Character table of C22 in TeX